
126 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL 36, NO 1, JANUARY 1988

Power Deposition of a Microstrip Applicator
Radiating into a Layered

Biological Structure

LUC BEYNE AND DANIEL DE ZUTTER

AMKM —The power deposited by a microstrip antenna into a layered

biological structure is investigated. The solution is based on an integral

equation for the surface current density on the antenna and on an electric

(%een’s dyadic for the fields inside a planar stratified medium. The

integral equation is solved using the method of moments in conjunction

with the point-matching technique. The modeling of the surface current

takes the edge conditions into account. Special attention is devoted to a

correct modeling of the excitation of the antenna by a coaxial feed. The

numerical rewdts f ecus on the power deposition as a function of depth.

I. INTRODUCTION

M ICROSTRIP ANTENNAS are used in a broad

range of applications and discussed in a large

amount of technical literature and books (see e.g. [1]). For

the design and analysis of microstrip antennas, a number

of authors start from a priori knowledge of the behavior of

the fields in parts of space [2]–[5]. This results in a

reduction of the volume that must be covered by the

calculations. Much interest is also devoted to special geom-

etries of microstrip antennas and to resonant modes of the

structures under study [6]–[10].

A relatively new application is the use of microstrip

antennas in the hyperthermia treatment of cancer [2], [10],

[11 ]. In this particular application, interest is focused on

the power deposition inside a biological tissue. This neces-

sitates a correct evaluation of the surface current on the

microstrip patch excluding simplified methods starting

from an educated guess of the current distribution. The

method also must be able to calculate the near fields

correctly and should allow for arbitrarily shaped patches.

To simplify the problem, the biological tissue will be

model ed as a two-dimensional multilayered structure.

In [2] a coupled integral equation technique is proposed

to analyze the radiation of a microstrip antenna. The

method is approximate as it neglects part of the exciting

current and in the case of a multilayered structure the

number of coupled equations would become too large to

handle.
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In [11] a mixed-potential approach is proposed in con-

junction with the method of moments with rooftop basis

functions. This analysis focuses on resonant behavior and

radiation patterns.

Our approach is based on an integral equation for the

surface current. The derivation of the relevant electric

Green’s dyadic suited for this purpose has been presented

elsewhere [12]. Our basis functions take the singular behav-

ior of the current components at the edges of the micro-

strip patch into account. Special attention is also given to a

correct modeling of the excitation. The numerical results

focus on the power deposition inside the biological tissue.

The method allows a rather fast evaluation of the fields at

every point of space once the unknown surface current on

the microstrip antenna has been determined.

11. GENERAL FORMULATION OF THE PROBLEM

We consider the general structure shown in Fig. 1. The

microstrip patch resides at the interface of the microstrip

substrate and the first layer of a planar stratified medium.

This medium will be used as a model of a layered biologi-

cal tissue. The patch is coaxially fed and a total current 1

is flowing onto the surface of the patch at O. The fields

generated by the radiating microstrip antenna depend upon

the unknown surface current distribution ~~. The electric

field depends upon ~~ through the electric Green’s dyadic

G=:

E(7) = /J Fe(ili’) .7~(i’)ds’. (1)

s

The integration extends over the surface of the antenna.

The position vector F belongs to an observation point, and

~‘ belongs to a variable integration point on the surface of

the patch.

A first step in solving the problem is the determination. —

of the Green’s dyadic ~=. In [12] it is shown that Fe can be

derived from a scalar Green’s function problem and that a

numerically accurate procedure makes the calculation of

this Green’s function possible for Iayerecl structures with

high losses and/or many layers. The method proposed in

112] is also suitable if the observation point 7 is located in

the source region, i.e., on the microstrip patch itself.

Starting from (l), we arrive at an integral equation for

the surface current density ~s by expressing the fact that

the tangential electric field must be zero on the microstrip
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Microstrip antenna radiating into a layered biological structure.

This leads to

-Ez(;s) =~~[GeXX(7~l;’)~~X(F’)

+ GeXY(F~lF’)&(~’)] dS’= O

q.(i~) = /~[G,y.(~sl~’)Js,(~’)
s

+ GJ;~lF’)J.#)] dS’= O (2)

7S is located on the patch. Strictly speaking, (2) is

obtained by a limiting process in which ?~ approaches the

surface. This limiting procedure will be important in the

sequel.

Discretization oj the Surface Current

The method of moments is a well-known technique for

solving an integral equation of the type given in (l). In the

sequel, the unknown surface current will be modeled by a

finite number of basis functions and by special functions

(the excitation functions) to accurately model the ~xcita-

tion by the current 1. On the microstrip antenna, Js can

be written as

i=l -

+[dox+di’)fiy ] (3)

where ~,, ( 7‘) and &(7’) represent the N basis functions

and g, and gY are the excitation functions. The complex

constants jX, and jYl will be determined by requiring that
(2) be satisfied in N points r.s~, k =1,2,. “ “, N of the

antenna. This approach is the well-known point-matching

technique. The above formulation leads to the solution of

the following set of 2N linear equations with 2N un-

(4)
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Fig. 2 Discretization of the surface current density.

and

(6)

with a=x, y: jl =x, y and k, i=l,2,. ... N.

III. SOLUTION FOR A RIiCTANGULAR PATCH

In the sequel our attention will be focused on the

rectangular microstrip patch. Our approach is based on a

grid of rectangular cells. If the dimensions of the patch are

dy and d,, we divide the patch in NX by NY cells. We

consider three kinds of elementary basis functions and

their center points A, B, and C as indicated in Fig. 2:

ordinary cells, edge cells, and corner cells. These functions

only differ from zero over a limited part of the surface, as

indicated by the shaded areas. Their value depends only

upon the distance to the center point 7C(A, B, and C in

Fig. 2). We also require these functions to be continuously

differentiable to ensure that the surface charge density

remains continuous. For an ordinary cell the above re-

quirements lead to

f,,(i) =f,l(7) =@x,(x -

where

@.I(x) ‘1–(32/7)72,

=15\14–(8\7)~,

= (32/7)(r - 1)2,

xc)4y(Y-Yc) (7)

O< T<l/8

1/’8 < T < 7/8

7/’8<~<l (8)

where ~ = lx l/A.,. The function +vl( y ) is defined in an

analogous way and AX and A} are shown in Fig. 2.

In the cells near the edge and in the corners, ~Xi and &

cannot be chosen in the same way due to the behavior of
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the surface current near the edge. The component of the

current parallel to the edge becomes singular as I/n,

where d is the distance to the edge [13]. The component of

the current perpendicular to the edge becomes zero as a.

Our model takes these phenomena into account. For a cell

at the left edge of the patch (see Fig. 2), we write

f., (~)=+..2(x)@.,l( Y-Y,)

fy, (~)=+., (x)+,, (Y-Ye) (9)

where @Vlwas given above and where @X2and ~.xj are

@.\z(x) = @..I(x - A./2), 1/2 < K

=1 +(64/ll)(K –1/2)2, 3/8 < K < 1/2

= (3/11)(6/K)””, 0< K<3/8

o\, (-x) =@..l(x– A../2)9 1/2 < K

=1 – (64/13)(K - 1/2)’, 3/’8 < K <1/’2

= (8/13 )(6 K)’/’, 0< K < 3/8 (10)

where K = x/A,,. The first equation in (9) models the

current parallel to the edge; the second one models the

current perpendicular to the edge.

Finally, we indicate how a corner cell (see Fig. 2) can be

modeled by giving the result for the cell in the lower left

corner:

&(~)=+A2(x)+y3(Y)

fx,(F)= @x3(x) Q5,2(y).

The functions +X2 and @Xgwere defined

and 0,3 are defined in an analogous way.

(11)

before and @,2

IV. MODELING OF THE INPUT CURRENT

The total current 1 flowing onto the surface of the patch

at O (see Fig. 1) gives rise to a radially divergent l/r

surface current density in the immediate neighborhood of

the feed point, where r represents the distance to this feed

point. The excitation functions gX and g} are chosen such

that they can model this behavior. In a small area around

the feed point, they must remain zero in order to take the
radius of the central conductor of the coaxial cable into

account. As before, we require that the excitation func-

tions be zero outside their definition region, but the transi-

tion between the l/r divergence and the region where the

excitation functions decay and finally become zero must

be sufficiently smooth. Taking the above considerations

into account, we choose the excitation functions to be

) (~ - ~feed) (12)gx(7)Z.x +gp(7)tiy =~(7-7fc.d O...

where

+,,’(?) =0, r < RCOU

=1/r2,

~0= < r < (7/16) R~aX

= [2/r - (16/7R~~)] [16/(7R~~)],

7/16 < r/R.~ < 3/4

= 2(16/7)2(r - R~=)2/(R~ur),

3/4 < r/R~= <1. (13)

(a)

(b)

Fig, 3, Modeling of the excitation by a coaxial feed. (a)
funcmon gY. (b) Excitation function g,.

Excitation

The area in which the excitation functions differ from zero

is determined by R ma and the radius of the inner conduc-

tor of the coaxial cable by RCOU. We have chosen R ~= in

such a way that the excitation functions only differ from

zero in a rectangular area of 3A Y by 3A ~ around the feed

point. Fig. 3 gives an impression of the variation of gX and

g,.

V. SELF-PATCH CONTRIBUTIONS

The calculation of the m and b elements in (5) and (6) is

crucial to the solution of the discretized integral equation.

The necessary integration over the surface S of the micro-

strip antenna can be carried out numerically over the

larger part of S, using a Gaussian quadrature formula.

However, in the immediate vicinity of an observation point

or point-matching point i~~, the so-called self-patch con-

tribution must be determined analytically. To that purpose
we exclude a small rectangular surface o from S. This

rectangle is centered around i~k. As shown in [12], the

Green’s dyadic G, consists of a numerical part and an

analytical part. For the self-patch contribution, only the

analytical part is important as the integral involving the

numerical part does not exhibit any singularities when

source point and observation point coincide.

The above considerations allow us to formulate the

problem for the m elements in (5) as follows:

Only the last integral in (14) must be calculated analyti-

cally. The numerical calculations of the other integrals
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Fig, 4. Power deposition of a rectangular microstrip antenna in a

bolus-muscle configuration

presents no difficulty. An analogous reasoning applies to

the b elements in (6).

In the neighborhood of each point ‘Sk the functions fp,,

~ =x, y, can be written as

fpl (~’) = Boo+ ~20$2 + ~02~2 + B22t2712
(15)

The value of the B coefficients follows directly from the

definitions of the basis functions in (7)-(11), and q = O,

.$= O represents Qe center of the rectangular patch u. The

Green’s dyadic G. with its four elements G,aB. a = x, y,

B =X, y, has the form

w;(p, z+dJ-w:(p, z+dJcos20

–WJ(p, z~dl)sin20

where ( ;SA – ;’) = p(cos 8iiX + sin OiiY). The variable in-

tegration point which covers u is i’. The general expres-

sions for the W integrals are given in [12]. For the calcula-

tion of the self-patch contribution, the analytical parts of

those W integrals are important. The general results in [12]

lead to

4T(X2+p2)1’2(W: ),n, =A–(B+C)

[( Ix2+p2)v_x 2P-2

4T(X2 + p’)5’2(w;)ana =A(2X2– p2)–3(B– C)P2

(17)

where

X=(:–dl) A= Eo/’’(61+E2)

B=(p1#+P2~; )/[( %+~2)’lh3] c=p1p2/(p1+p2).

(18)

Here t, = ~Oc,, + u, /ju and p, represent, respectively, the

complex permittivity and the magnetic permeability of the

microstrip substrate (i =1) and of the layer immediately

above the microstrip antenna (i= 2).

It must be emphasized that

has been carefully retained. It

always allowed to interchange

the self-patch integral over o

129

the limit z -+ dl or x ~ O

can be seen that it is not

the integration process in

and the limiting process

z ~ dl. In order to evaluate the self-patch integrals cor-

rectly, it is necessary to start from the values (17) of the

analytical parts of the W integrals for x # O. In a second

step, the self-patch integrals are calculated with x # O and

the limit x ~ O is only applied to the result of that

integration.

We will not go into further details here. With the above

procedure the self-patch integrals for the m elements in (5)

and (14) can be found. The same procedure applies to the

b elements in (6). The actual integration always reduces to

one of the following integrals:

/f(@) sinq@/cosq-p+2$d$, q=0,2andp=l,3

(19)

with /($) =1, sin2@, or cos2@

VI. POWER DEPOSITION OF A RECTANGULAR

MICROSTRIP ANTENNA

The approach followed in this paper aimed at calculat-

ing the radiation of a microstrip antenna in a layered Iossy

medium. This situation is of particular importance for the

modeling of the hyperthermia treatment of cancer. In this

section we will discuss a single example to illustrate the

proposed method. More extensive numerical data will be

provided in a future publication.

– W~(p, z~dl)sin28

w;(p, z+dJ+w;(p, z+dJcos2e
(16)

A relevant example is shown on Fig. 4. The microstrip

antenna measures 2 cm by 2 cm; the excitation is at the

center and the frequency is 915 MHz, a typical hyperther-

mia frequency. A first layer of 0.5 cm is the substrate of

the microstrip antenna with c, = 2.53 (Rexolit). The second

layer is the water-bolus, 0.5 cm thick and with ~, = 80. This

bolus must prevent the overheating of the tissue close to

the microstrip antenna. The third layer is unbounded and

represents muscle tissue with a complex permittivity c, =

58 – j12. All the materials involved are nonmagnetic.

The surface current distribution generated on the an-

tenna is shown on Fig. 5. The top drawing gives the

in-phase components, the bottom drawing the quadrature

components on a scale 100 times larger. Hence, the

quadrature components are small compared with the in-

phase ones.

The most important feature of the microstrip antenna is

the distribution of the power generated inside the biologi-

cal tissue. This distribution can be calculated starting from

(1) when the surface current density is known. As the

observation point ; now lies everywhere in space, the full
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(b)

Fig. 5. (a) In-phase component of the surface current density relevant
to the example of Fig. 4. (b) Quadrature component of the surface

current density relevant to the example of Fig. 4.

Green’s dyadic E= with its nine elements [12] must be

taken into account. The power distribution in the muscle

tissue is shown in Figs. 4 and 6. The labeled curves on Fig.

4 indicate how fast this dissipated power decays. Every
curve is a contour of constant power corresponding to a

value four times lower compared with the previous curve.

Fig. 6 gives results in a 4 cm by 4 cm area centered

around the antenna but at several distances from the

antenna, ranging from z = 1 cm, which is at the

bolus–muscle interface, up to z = 4 cm. This result

dramatically illustrates the defocusing of the power as the

distance from the antenna increases. In a recent paper,

Bardati et d. [14] found an analogous defocusing effect

hr Z.lcm

cm

4 cm

m

(a)

m

cm

4 cm

(b)

Fig, 6, Defocusing of the power deposition as a function of depth in the
example of Fig. 4

from temperature measurements in a layered biological

tissue heated by a waveguide applicator.

VII. CONCLUSIONS

The use of (an array of) microstrip antennas in the local

hyperthermia treatment of malignant tumors becomes in-

creasingly important. To be able to predict the power

deposition generated by this type of antennas, we started

from a planar stratified model of a biological tissue. With

the help of a suitable electric Green’s dyadic an integral

equation for the surface current density on the surface of

the microstrip antenna could be formulated. To solve this
integral equation, the method of moments was applied. A

correct handling of the self-patch contribution was only

possible starting from a thorough analytical knowledge of

the behavior of the Green’s dyadic. Special attention was

paid to a correct modeling of the behavior of the current

near the edges of the microstrip patch and near the feed

point. The numerical results show that a strong defocusing

of the dissipated power occurs at more than half a wave-

length away from the antenna. In the future the proposed

method will be extended to cover more complex geome-

tries of the microstrip patches and the interaction between

several antennas.
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