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Power Deposition of a Microstrip Applicator
Radiating into a Layered
Biological Structure

LUC BEYNE anp DANIEL DE ZUTTER

Abstract — The power deposited by a microstrip antenna into a layered
biological structure is investigated. The solution is based on an integral
equation for the surface current density on the antenna and on an electric
Green’s dyadic for the fields inside a planar stratified medium. The
integral equation is solved using the method of moments in conjunction
with the point-matching technique. The modeling of the surface current
takes the edge conditions into account. Special attention is devoted to a
correct modeling of the excitation of the antenna by a coaxial feed. The
numerical results focus on the power deposition as a function of depth.

I. INTRODUCTION

MICROSTRIP ANTENNAS are used in a broad
range of applications and discussed in a large
amount of technical literature and books (see e.g. [1]). For
the design and analysis of microstrip antennas, a number
of authors start from a priori knowledge of the behavior of
the fields in parts of space [2]-[5]. This results in a
reduction of the volume that must be covered by the
calculations. Much interest is also devoted to special geom-
etries of microstrip antennas and to resonant modes of the
structures under study [6]-[10].

A relatively new application is the use of microstrip
antennas in the hyperthermia treatment of cancer [2], [10],
[11]. In this particular application, interest is focused on
the power deposition inside a biological tissue. This neces-
sitates a correct evaluation of the surface current on the
microstrip patch excluding simplified methods starting
from an educated guess of the current distribution. The
method also must be able to calculate the near fields
correctly and should allow for arbitrarily shaped patches.
To simplify the problem, the biological tissue will be
modeled as a two-dimensional multilayered structure.

In [2] a coupled integral equation technique is proposed
to analyze the radiation of a microstrip antenna. The
method is approximate as it neglects part of the exciting
current and in the case of a multilayered structure the
number of coupled equations would become too large to
handle.
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In [11] a mixed-potential approach is proposed in con-
junction with the method of moments with rooftop basis
functions. This analysis focuses on resonant behavior and
radiation patterns.

Our approach is based on an integral equation for the
surface current. The derivation of the relevant electric
Green’s dyadic suited for this purpose has been presented
elsewhere [12]. Our basis functions take the singular behav-
ior of the current components at the edges of the micro-
strip patch into account. Special attention is also given to a
correct modeling of the excitation. The numerical results
focus on the power deposition inside the biological tissue.
The method allows a rather fast evaluation of the fields at
every point of space once the unknown surface current on
the microstrip antenna has been determined.

II. GENERAL FORMULATION OF THE PROBLEM

We consider the general structure shown in Fig. 1. The
microstrip patch resides at the interface of the microstrip
substrate and the first layer of a planar stratified medium.
This medium will be used as a model of a layered biologi-
cal tissue. The patch is coaxially fed and a total current [
is flowing onto the surface of the patch at O. The fields
generated by the radiating microstrip antenna depend upon
the unknown surface current distribution J;. The electric
field depends upon J; through the electric Green’s dyadic
G .

C E(7) = [[ G.(7)-Js(7) as". (1)

The integration extends over the surface of the antenna.
The position vector 7 belongs to an observation point, and
7’ belongs to a variable integration point on the surface of
the patch.

A first step in solving the problem is the determination

of the Green’s dyadic G,. In [12] it is shown that G, can be
derived from a scalar Green’s function problem and that a
numerically accurate procedure makes the calculation of
this Green’s function possible for layered structures with
high losses and /or many layers. The method proposed in
[12] is also suitable if the observation point 7 is located in
the source region, i.e., on the microstrip patch itself.
Starting from (1), we arrive at an integral equation for
the surface current density J; by expressing the fact that
the tangential electric field must be zero on the microstrip
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Fig. 1. Microstrip antenna radiating into a layered biological structure.

patch. This leads to
EX(FS) ='f/;[Gexx(fS|;,)JSx(F/)

+ Gy (Fl7) 5, (7)) dS' =
Ev(’:S) = f‘/:g[Geyx(;Slf/)‘]Sx(F/)

+ Geyy(;Sl’_J)JSy(f,)] as’= (2)

where 7 is located on the patch. Strictly speaking, (2) is
obtained by a limiting process in which r¢ approaches the
surface. This limiting procedure will be important in the
sequel.

Discretization of the Surface Current

The method of moments is a well-known technique for
solving an integral equation of the type given in (1). In the
sequel, the unknown surface current will be modeled by a
finite number of basis functions and by special functions
(the excitation functions) to accurately model the excita-
tion by the current I. On the microstrip antenna, Jg can
be written as

Jo(#) = X [t @)+ jufy(7)1, ]

+{e(7)a, +8,(F)E,] (3)

where f.,(r') and f, (7') represent the N basis functions
and g, and g, are the excitation functions. The complex
constants j,, and j, will be determined by requiring that
(2) be satisfied in N points rg, k=1,2,---,N of the
antenna. This approach is the well-known point-matching
technique. The above formulation leads to the solution of
the following set of 2N linear equations with 2N un-
knowns:

Z]w ‘<ku+ Z]}z kaz x
=1

Z sz yxki + Z Jyt yyki byk (4)
=1

=1

where

Maprr = /fSGeuﬁ(fSklf/)fﬁx(;’) as’ (5)
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Fig. 2 Discretization of the surface current density.

and

oy =~ /L[Geak(FSkl;/)gx(F/)-F Geay(;Sk!’_’/)gy(’_")] ds’
(6)

witha=x, y: B=x, yand k, i=1,2,---, N

III. SOLUTION FOR A RECTANGULAR PATCH

In the sequel our attention will be focused on the
rectangular microstrip patch. Our approach is based on a
grid of rectangular cells. If the dimensions of the patch are
d. and d,, we divide the patch in N, by N, cells. We
cons1der three kinds of elementary bas1s functlons and
their center points 4, B, and C as indicated in Fig. 2:
ordinary cells, edge cells, and corner cells. These functions
only differ from zero over a limited part of the surface, as
indicated by the shaded areas. Their value depends only
upon the distance to the center point 7. (4, B, and C in
Fig. 2). We also require these functions to be continuously
differentiable to ensure that the surface charge density
remains continuous. For an ordinary cell the above re-
quirements lead to

fu(7) =fy;(’7) =¢q(x 'xc)q)yl(y_ v.) (7)
where
(%) =1-(32/7)7%, 0<r<1/8
=15/14—(8/T)r, 1/8<7<7/8
=(32/N(r-1)%,  1/8<7<l (8)

where 7= |x|/A, . The function ¢,(y) is defined in an
analogous way and A, and A, are shown in Fig. 2.

In the cells near the edge and in the corners, f,; and f,,
cannot be chosen in the same way due to the behavior of
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the surface current near the edge. The component of the
current parallel to the edge becomes singular as 1/vVd,
where d is the distance to the edge [13]. The component of
the current perpendicular to the edge becomes zero as vd .
Our model takes these phenomena into account. For a cell
at the left edge of the patch (see Fig. 2), we write

fw(’_’) = ¢x2(x)¢yl(y - )’c)
Fa(F)=d,5(x) e (y—5)

where ¢, was given above and where ¢, and ¢, are

9)

o.(x)=9¢,(x—A4,,2), 1/2<x
=1+(64/11)(k—=1/2)°,  3/8<xk<1,2
= (3/11)(6/x)", 0<k<3/8

d5(x) =¢a(x—4./2), 1/2<x
=1-(64/13)(k—1/2)’, 3/8<k<1/2

= (8/13)(6x)"”, 0<k<3/8 (10)

where k= x/A_. The first equation in (9) models the
current parallel to the edge; the second one models the
current perpendicular to the edge.

Finally, we indicate how a corner cell (see Fig. 2) can be
modeled by giving the result for the cell in the lower left

| 1(7) = 0o (x)d5(»)
1o (F) = 6us() 6,0 ). (1)

The functions ¢,, and ¢,, were defined before and ¢,,
and ¢, are defined in an analogous way.

IV. MODELING OF THE INPUT CURRENT

The total current I flowing onto the surface of the patch
at O (see Fig. 1) gives rise to a radially divergent 1/r
surface current density in the immediate neighborhood of
the feed point, where r represents the distance to this feed
point. The excitation functions g, and g, are chosen such
that they can model this behavior. In a small area around
the feed point, they must remain zero in order to take the
radius of the central conductor of the coaxial cable into
account. As before, we require that the excitation func-
tions be zero outside their definition region, but the transi-
tion between the 1/r divergence and the region where the
excitation functions decay and finally become zero must
be sufficiently smooth. Taking the above considerations
into account, we choose the excitation functions to be

g (F)a, +g,(F)ia,=I(F = Froeq) bexe (F — Freea) (12)
where
b (7) =0,
=1/r2,

r<R

coax

RCOaX < r < (7/16)Rmax
= [2/r = (16 /7R ., )] [16/(TR 10, )],

7/16 <r/R_,, <3/4
=2(16/7)(r = Ry )’ /(R3,07),

3/4<r/R_,.<1. (13)
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Fig. 3. Modeling of the excitation by a coaxial feed. (a) Excitation

function g.. (b) Excitation function g,.

The area in which the excitation functions differ from zero
is determined by R, and the radius of the inner conduc-
tor of the coaxial cable by R_,,.. We have chosen R, in
such a way that the excitation functions only differ from
zero in a rectangular area of 3A by 3A  around the feed
point. Fig. 3 gives an impression of the variation of g_and

g ¥y
V. SeLF-PATcH CONTRIBUTIONS

The calculation of the m and b elements in (5) and (6) is
crucial to the solution of the discretized integral equation.
The necessary integration over the surface S of the micro-
strip antenna can be carried out numerically over the
larger part of S, using a Gaussian quadrature formula.
However, in the immediate vicinity of an observation point
or point-matching point 7, the so-called self-patch con-
tribution must be determined analytically. To that purpose
we exclude a small rectangular surface ¢ from S. This
rectangle is centered around rg,. As shown in [12], the
Green’s dyadic G, consists of a numerical part and an
analytical part. For the self-patch contribution, only the
analytical part is important as the integral involving the
numerical part does not exhibit any singularities when
source point and observation point coincide.

The above considerations allow us to formulate the
problem for the m elements in (5) as follows:

Mgt = [[[Goap FotlF)] s (F) S
f] [Geastl )] (F) a5’

+ ffa[GmB(fSklf’)]anaf,;,(f') das’. (14)

Only the last integral in (14) must be calculated analyti-
cally. The numerical calculations of the other integrals
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Fig. 4. Power deposition of a rectangular microstrip antenna in a
bolus-muscle configuration

presents no difficulty. An analogous reasoning applies to
the b elements in (6).

In the neighborhood of each point 7g, the functions fs,,
B = x, y, can be written as

fﬁz (f,) =By, + Bzogz + Bozn2 + Bzzgznz-

(15)

The value of the B coefficients follows directly from the
definitions of the basis functions in (7)-(11), and =0,
¢ =0 represents the center of the rectangular patch o. The
Green’s dyadic G, with its four elements Goopr €=X, Y,
B = x, y, has the form

We(p,z—dy)—Ws(p,z—d,)cos28
—W3(p,z—d,;)sin26

where (g, — ') = p(cosBu, +sinfu,). The variable in-
tegration point which covers o is 7’. The general expres-
sions for the W integrals are given in [12]. For the calcula-
tion of the self-patch contribution, the analytical parts of
those W integrals are important. The general results in [12]
lead to

47(x> + 02) (W) uma = A~ (B+C)
.[(xz 1 p2)1/2_x]2p—2
am(x2+ 02) (W) a= A(2x2 = p*) =3(B - C)p?

17)

ana

where
x=(z—d,) A=¢y/(e1t€,)

B=(I-‘1€12+Hzf%)/[(€1+€2)2ﬂo] C=pypy /(1 + B2)-

(18)

Here ¢, = €4¢,, + 0,/jw and p, represent, respectively, the
complex permittivity and the magnetic permeability of the
microstrip substrate (i =1) and of the layer immediately
above the microstrip antenna (i = 2).

129

It must be emphasized that the limit z - d;, or x>0
has been carefully retained. Tt can be seen that it is not
always allowed to interchange the integration process in
the self-patch integral over ¢ and the limiting process
z—d;. In order to evaluate the self-patch integrals cor-
rectly, it is necessary to start from the values (17) of the
analytical parts of the W integrals for x # 0. In a second
step, the self-patch integrals are calculated with x # 0 and
the limit x =0 is only applied to the result of that
integration,

We will not go into further details here. With the above
procedure the self-patch integrals for the m elements in (5)
and (14) can be found. The same procedure applies to the
b elements in (6). The actual integration always reduces to
one of the following integrals:

j]@ﬁQM¢ﬂmﬂv+%d¢, g=0,2and p=1,3

(19)
with f(¢) =1, sin2¢, or cos2¢.

VI. PoweR DEPOSITION OF A RECTANGULAR
MICROSTRIP ANTENNA

The approach followed in this paper aimed at calculat-
ing the radiation of a microstrip antenna in a layered lossy
medium. This situation is of particular importance for the
modeling of the hyperthermia treatment of cancer. In this
section we will discuss a single example to illustrate the
proposed method. More extensive numerical data will be
provided in a future publication.

—Ws¢(p,z—d;)sin28

(16)
We(p,z—d))+WE(p, z = dy)cos2f

A relevant example is shown on Fig. 4. The microstrip
antenna measures 2 cm by 2 cm; the excitation is at the
center and the frequency is 915 MHz, a typical hyperther-
mia frequency. A first layer of 0.5 cm is the substrate of
the microstrip antenna with €, = 2.53 (Rexolit). The second
layer is the water-bolus, 0.5 cm thick and with €, = 80. This
bolus must prevent the overheating of the tissue close to
the microstrip antenna. The third layer is unbounded and
represents muscle tissue with a complex permittivity e, =
58 — j12. All the materials involved are nonmagnetic.

The surface current distribution generated on the an-
tenna is shown on Fig. 5. The top drawing gives the
in-phase components, the bottom drawing the quadrature
components on a scale 100 times larger. Hence, the
quadrature components are small compared with the in-
phase ones.

The most important feature of the microstrip antenna is
the distribution of the power generated inside the biologi-
cal tissue. This distribution can be calculated starting from
(1) when the surface current density is known. As the
observation point 7 now lies everywhere in space, the full
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Fig. 5. (a) In-phase component of the surface current density relevant
to the example of Fig. 4. (b) Quadrature component of the surface
current density relevant to the example of Fig. 4.

Green’s dyadic G, with its nine elements [12] must be
taken into account. The power distribution in the muscle
tissue is shown in Figs. 4 and 6. The labeled curves on Fig.
4 indicate how fast this dissipated power decays. Every
curve is a contour of constant power corresponding to a
value four times lower compared with the previous curve.
Fig. 6 gives results in a 4 cm by 4 cm area centered
around the antenna but at several distances from the
antenna, ranging from z=1 cm, which is at the
bolus—muscle interface, up to z=4 cm. This result
dramatically illustrates the defocusing of the power as the
distance from the antenna increases. In a recent paper,
Bardati et al. [14] found an analogous defocusing effect

z =2cm

e
\"’,esi:

(a)

()
Fig. 6. Defocusing of the power deposition as a function of depth in the
example of Fig. 4

from temperature measurements in a layered biological
tissue heated by a waveguide applicator.

VIL

The use of (an array of) microstrip antennas in the local
hyperthermia treatment of malignant tumors becomes in-
creasingly important. To be able to predict the power
deposition generated by this type of antennas, we started
from a planar stratified model of a biological tissue. With
the help of a suitable electric Green’s dyadic an integral
equation for the surface current density on the surface of
the microstrip antenna could be formulated. To solve this
integral equation, the method of moments was applied. A
correct handling of the self-patch contribution was only
possible starting from a thorough analytical knowledge of
the behavior of the Green’s dyadic. Special attention was
paid to a correct modeling of the behavior of the current
near the edges of the microstrip patch and near the feed
point. The numerical results show that a strong defocusing
of the dissipated power occurs at more than half a wave-
length away from the antenna. In the future the proposed
method will be extended to cover more complex geome-
tries of the microstrip patches and the interaction between
several antennas.

CONCLUSIONS
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